
Python lists and arrays

We have used Python lists to store collections of objects. Lists are a quite powerful data structure:
one can quite efficiently append elements at the end, and there are methods for inserting and removing
elements at any position.

If you have programmed in Java, C, or C++ before, you know that the only built-in method of storing
collections of objects is as an array. If you need anything more sophisticated, you need to use a data
structure from a library.

Python makes our life easier by providing Python lists as a basic data structure, but of course the
Python interpreter has to implement this data structure. And, like in Java or C, it is implemented
using an array. In this chapter we will study how this is done and how Python lists obtain their good
performance.

Arrays

An array is just a block of memory, suitable to store references to a given, fixed number of objects. It is
not possible to resize the memory block, so the array size remains fixed once the array has been created.

Since Python does not provide arrays, we will use a simple array simulation in the cs206array

module. It provides the following:

• Create an array with n slots using Array(n);
• Get the length of array a with len(a);
• Access or modify the element at index i with a[i];
• Loop over the elements of an array a with for el in a.

(The implementation in cs206array.py simply uses a list—but the point is that our array simulation
will force us to work only with the operations available for arrays.)

Arrays that can grow

The main feature that distinguishes the Python list from an array is that it can grow and shrink when
elements are added or removed. We will now try to implement such a data structure ourselves. We will
call it GrowArray and we keep it simple: the only new operation we support is append, which adds an
element at the end of the collection.

Consider example program readwords2.py. It creates an empty GrowArray, reads words from a large
file, and appends each word to the GrowArray.

Here is our first attempt to define the GrowArray:

class GrowArray():

def __init__(self):

self._a = None

def __len__(self):

return len(self._a)

def __getitem__(self, i):

return self._a[i]

def append(self, el):

if self._a == None:

self._a = Array(1)

self._a[0] = el

else:

oldA = self._a

n = len(oldA)

self._a = Array(n + 1)

for i in range(n):

1

self._a[i] = oldA[i]

self._a[n] = el

The GrowArray internally uses an array referenced from its field _a. (The underscore at the beginning
of the field name indicates that clients of the GrowArray are not allowed to access this field directly. It
is an implementation detail.)

The first time we append to an empty GrowArray, we create an array of size 1 and store the element
there. When we append elements later, we first create a new array of the correct size (that is, the old
size plus one), then we copy all elements from the old array to the new array, and finally we store the
element el in the last slot of the new array. (Note that when append returns, there is no reference to
the old array left, so it immediately becomes garbage.)

Let us analyze this technique. To keep the analysis simple, we will only count how often elements are
copied from an old array to a new one. That is, we count how often the line self._a[i] = oldA[i] is
executed. Clearly, when calling a.append(el), this happends exactly len(a) times.

That means that when we store n words in a GrowArray using this method, the copy line is executed
exactly

n−1∑
k=0

k =
n(n− 1)

2
≈ n2

2
times.

In other words, the total running time is quadratic in the number of words. We can indeed observe this
behavior in our experiments: When we increase n by a factor 10, the running time increases roughly by
a factor of 100.

How can we improve this? Clearly the problem is that creating a new array every time we append
an element is very wasteful—we need to do this less often. The solution is to use an array that is larger
than the current size of the GrowArray, so that we can add elements without having to recreate the
array. Of course this means that we have to maintain the actual size of the GrowArray in a separate
variable. Here is the new version (from example code readwords3.py):

class GrowArray():

def __init__(self):

self._a = Array(32)

self._size = 0

def __len__(self):

return self._size

def __getitem__(self, i):

return self._a[i]

def append(self, el):

if self._size == len(self._a):

array is full, make a new one

oldA = self._a

n = len(oldA)

self._a = Array(n + 32)

for i in range(n):

self._a[i] = oldA[i]

self._a[self._size] = el

self._size += 1

We store the actual size of the GrowArray in the field _size. Note that len(a) will return a._zize. In
the beginning, the size is zero, even though the array _a can already hold 32 elements.

In the append method, we distinguish two cases: If self._zize is less than the length of the array
self._a, then there is enough space left for the new element, so we can simply store it. We also need to
increase self._size to reflect the new size of the GrowArray.

Otherwise, there is no space left to store the new element, so we need to create a new array. We
make it large enough to store 32 extra elements, copy all elements from the old array to the new one,
and finally store the new element and update the size.

2

Let’s again count how often elements are copied from the old to the new array. This happens in
a.append(el) exactly when len(a) is a multiple of 32, and then len(a) elements are copied. So, when
appending n words in total, we execute this line

b(n−1)/32c∑
k=1

32k times.

Let’s set m = b(n− 1)/32c (in Python syntax m = (n-1) // 32). Then the formula becomes

m∑
k=1

32k = 32

m∑
k=1

k = 32
m(m + 1)

2
≈ 16m2 ≈ 16

n2

322
=

n2

64
.

This is better than n2/2, but only by a factor 32. The running time still grows quadratically in n, and
again we can observe that in our experiments.

How can we do better than this? Changing the number 32 for a larger number only changes the
constant factor, it doesn’t change the quadratic behavior (do the calculation yourself!).

The solution is to make the increase larger as the size of the array gets larger. For instance, we can
double the size of the array whenever it overflows, like this:

def append(self, el):

if self._size == len(self._a):

array is full, make a new one

oldA = self._a

n = len(oldA)

self._a = Array(2 * n)

for i in range(n):

self._a[i] = oldA[i]

self._a[self._size] = el

self._size += 1

(The only thing that has changed is the computation of the new array size.)
Again, we analyze the number of copy instructions. a.append(el) needs to enlarge the array every

time that len(a) is 32, 64, 128, 256, etc., and then it makes len(a) copies. Let 2m be the largest power
of two that is less than n. Then the total number of copy instructions is

m∑
k=5

2k = 2m+1 − 32 < 2n.

Our experiments show that indeed the running time increases as a linear function of n.
The disadvantage, of course, is that this method uses quite a bit of extra memory: If you need to

store one million elements, you will actually create an array with two million slots. We can improve this
by changing the factor two to something smaller, say 1.5 or 1.25.

Python lists

Python lists are implemented with exactly this method. You can use the function slots from the
cs206mem module to determine the current capacity of a Python list. A little bit of experimentation (see
example code measure1.py, measure2.py, and measure3.py) shows that when you append to a Python
list that is completely filled, then a new array with b1.125(n + 1)c + 6 slots is created, where n is the
previous array size.

Useful to know: when you create a list of a specific size, for instance using the expression [None] * 1000

or [0] * 1000, the list will be created without any extra space, so the capacity will be equal to the size.

3

