
CS109 Objects

Objects are the basis of object-oriented programming. In
Kotlin, every piece of data is an object.

An object
• stores data (has state), and
• provides methods to access or manipulate its state.

The object ensures that its state is consistent.

In most classes, the state is hidden: we can only access the
state of an object through its methods.

For instance, List is implemented using an array, but we
cannot access this array directly. And we don’t even know how
Map and Set are implemented.

CS109 Data classes and general classes

So far, we have only defined simple classes where all fields are
publicly visible and defined as class arguments:

data class Point(val x: Int, val y: Int)

In general classes, fields can be defined both as class
arguments and inside the class:

class ColoredPoint(val x: Int, val y: Int) {

var color = Color.WHITE

}

>>> val p = ColoredPoint(2, 3)

>>> p.color

Color(r=255, g=255, b=255)

>>> p.color = Color.RED

>>> p.color

Color(r=255, g=0, b=0)

CS109 Hidden state

We need an accumulator that keeps a running total of some
purchases:

class Accumulator {

var sum = 0

fun add(n: Int) { sum += n }

}

must initialize!

>>> val acc1 = Accumulator()

>>> val acc2 = Accumulator()

>>> acc1.add(13); acc2.add(13)

>>> acc1.add(17); acc2.add(4)

>>> acc2.add(44)

>>> acc1.sum

30

>>> acc2.sum

61

no class arguments

still needed!

accum1.kts

CS109 Privacy

Clients of Accumulator should consider it as a black box with
two operations: Add a number to the running sum; and read
out the running sum.

Solution: make methods and fields private, and they can
only be used from within methods of the class:

class Accumulator {

private var current = 0

fun add(n: Int) { current += n }

fun sum(): Int = current

}
accum2.kts



CS109 Class arguments

Classes can have class arguments that are not fields:

data class Point(val x: Int, val y: Int)

class Rect(x: Int, y: Int,

val width: Int, val height: Int) {

var corner = Point(x, y)

init { require(width > 0 && height > 0) }

}

Not fields!

Created during construction of Rect

CS109 Blackjack

(There are 52 cards. Each card has a face and a suit.
The suits are clubs, spades, hearts, and diamonds. The
faces are 2, 3, . . . , 10, Jack, Queen, King, Ace.)

data class Card(val face: String, val suit: String) {

init { require(suit in Suits && face in Faces) }

fun value(): Int = when(face) {

"Ace" -> 11

"Jack" -> 10

"Queen" -> 10

"King" -> 10

else -> face.toInt()

}

} blackjack1.kt

CS109 The Deck

The Deck class stores an entire deck of cards. It stores the list
of cards as hidden state:

class Deck {

private val cards = mutableListOf<Card>()

init {

generateDeck()

shuffleDeck()

}

private fun generateDeck() { ... }

private fun shuffleDeck() { ... }

fun draw(): Card {

assert(!cards.isEmpty())

return cards.removeAt(cards.lastIndex)

}

}

empty list

code to fill deck with cards

private methods

blackjack2.kt

CS109 The game

fun blackjack(): Int {

val deck = Deck()

// initial cards

var player = mutableListOf(deck.draw())

println("You are dealt " + player.first())

var dealer = mutableListOf(deck.draw())

println("Dealer is dealt a hidden card")

player.add(deck.draw())

println("You are dealt " + player.last())

dealer.add(deck.draw())

println("Dealer is dealt " + dealer.last())

println("Your total is ${handValue(player)}")

// ...

}

blackjack-game.kt


