
CS109 Objects

Objects are the basis of object-oriented programming. In
Kotlin, every piece of data is an object.

An object
• stores data (has state), and
• provides methods to access or manipulate its state.

Consider an object as an atomic units. Clients (users of the
object) do not care about the implementation of the object,
they only use the exposed methods and fields.

A class defines a new type of object. Think about a class as a
blueprint for objects. You can create objects from the
blueprint.

CS109 Dates (Year, Month, Day)

We can write functions to work with these objects, for instance
to compute the number of days between two Dates.

But:
• We cannot guarantee that objects are consistent (that is,

that they represent a legal date)
• There is no obvious connection between the date type and

the functions that work on dates.

We designed a class for dates:

data class Date(val year: Int, val month: Int,

val day: Int)

CS109 Date class

An immutable date class that guarantees a consistent state:

data class Date(val year: Int, val month: Int,

val day: Int) {

init {

require(1901 <= year && year <= 2099)

require(1 <= month && month <= 12)

require(1 <= day && day <= monthLength[month-1])

require(month != 2 || day<=28 || (year % 4)==0)

}

}

This type guarantees that date values are always consistent.
The init block is executed when the object is created.

days1.kt

CS109 Methods

Let’s add a method to convert the date to a day index, starting
at day 0 on 1901-01-01.

data class Date(val year: Int, val month: Int,

val day: Int) {

init { /* ensure consistent state */ }

fun dayIndex(): Int {

// some calculations...

total += day - 1

if (year%4 != 0 && month > 2)

total -= 1

return total

}

fun dayOfWeek():String = weekday[(dayIndex()+1)%7]

}
Inside a method, fields are used like global variables.

days3.kt

CS109 String conversion method

Every object has a method toString. We can override it to
make it look nicer:

data class Date(...) {

// ...

override fun toString(): String =

"%s, %s %d, %d".format(dayOfWeek(),

monthname[month-1],

day, year)

}
>>> val d1 = Date(1901, 1, 1)

>>> d1

Tuesday, January 1, 1901

>>> val d2 = Date(2017, 5, 14)

>>> d2

Sunday, May 14, 2017

days4.kt

CS109 Difference between Dates

Let’s compute the number of days between two dates:

data class Date(...) {

// ...

fun diff(rhs: Date): Int =

dayIndex() - rhs.dayIndex()

}

>>> val d1 = Date(2017, 5, 14)

>>> val d2 = Date(2018, 1, 13)

>>> d2.diff(d1)

244

>>> d1.diff(d2)

-244

days5.kt

CS109 Operators

In Kotlin, operators are just normal methods. For instance, in
the expression a - b, we are calling the minus method of the
a object. The same expression can be written a.minus(b).

data class Date(...) {

// ...

operator fun minus(rhs: Date): Int =

dayIndex() - rhs.dayIndex()

}

>>> val d1 = Date(2017, 5, 14)

>>> val d2 = Date(2017, 6, 16)

>>> d2 - d1

33

CS109 Overloading

It is allowed to have different functions or methods that have
the same name, and only differ in the type of arguments they
accept.

fun f(n: Int) {

println("Int " + n)

}

fun f(s: String) {

println("String " + s)

}

f(17)

f("CS109")

Overloading means that we have different methods with the
same name (here f), distinguished by their argument type.

CS109 Another operator

We can also define + and - operators that add and subtract a
number of days from the given date.

data class Date(...) {

// ...

operator fun minus(rhs: Date): Int =

dayIndex() - rhs.dayIndex()

operator fun plus(n: Int): Date =

num2date(dayIndex() + n)

operator fun minus(n: Int): Date =

num2date(dayIndex() - n)

} days7.kt

