
CS109 Exceptions

When a runtime error occurs, the program terminates with an
exception message:

>> val a = 3

>>> a / 0

java.lang.ArithmeticException: / by zero

>>> val s = "abc"

>>> s.toInt()

java.lang.NumberFormatException:

For input string: "abc"

>>> val s = Array<Int>(100000000) { 0 }

java.lang.OutOfMemoryError: Java heap space

>>> java.io.File("test.txt").forEachLine

{ println(it) }

java.io.FileNotFoundException: test.txt

(No such file or directory)

CS109 Exceptions and Errors

>>> var s: String? = null

>>> s!!.length

kotlin.KotlinNullPointerException

>>> val a = Array(100000000) { 0 }

java.lang.OutOfMemoryError: Java heap space

Errors indicate a serious failure, where continuing the program
makes no sense.

An Exception indicates an unusual (exceptional) condition,
such as a mistake in input data.

CS109 Handling exceptions

Some exceptions can be handled (or caught).

• NumberFormatException: print an error message to the
user and request a new input.

• FileNotFoundException: try a different file name.

Old programming languages like C do not have exceptions, and
all errors or unusual conditions need to be handled by error
codes.

Exceptions make function calls cleaner:
val n = s.toInt()

In C, converting a string to an integer must return both an
error code and the resulting integer.

CS109 Catching exceptions

If an exception occurs inside a try clause, execution continues
with a matching exception handler in the catch clause:

val str = readString("Enter a number> ")

try {

val x = str.toInt()

println("You said: $x")

}

catch (e: NumberFormatException) {

println("’$str’ is not a number")

}

Exceptions are caught even if they occur inside functions called
in the try block.

catch1.kts

CS109 Catching across function calls

fun test(s: String): Int =

(s.toDouble() * 100).toInt()

fun show(s: String) {

try {

println(test(s))

}

catch (e: NumberFormatException) {

println("Incorrect input")

}

}

>>> show("123.456")

12345

>>> show("123a456")

Incorrect input
catch2.kts

CS109 Handling exceptions

If an exception occurs, the normal flow of control is
interrupted. Execution continues in the innermost catch block
with a matching exception handler.

fun f(n: Int) = g(n)

fun g(n: Int) {

val m = 100 / n

println("The result is $m")

}

try {

f(n)

}

catch (e: ArithmeticException) {

println("I can’t handle this value!")

} except1.kts

CS109 Throwing exceptions

When we detect an error in the input data, we can throw an
exception ourselves:

if (n < 0)

throw IllegalArgumentException()

Exceptions are often used to detect errors in the input data.

We can catch the exception at a suitable place in the program
and print an error message, or handle the problem in some
other way.

except2.kts

except3.kts

CS109 Assertions

Exceptions are used to detect errors in input data.
Assertions are used to detect errors in your program.

The statement:
assert(condition)

throws an AssertionError if condition is false.

... code A computing string s ...

// if A is correct, then s is not empty

assert(s.isNotEmpty())

... code B (using s) ...

The assertion protects code B from errors in code A.

Without the assertion, an error in A could cause a strange
problem in B. Debugging could be difficult.

CS109 require

require is a special form of assertion, that throws an
IllegalArgumentException. It is used to protect a function
from being used with incorrect arguments.

fun factorial(n: Int): Long {

require(n >= 2)

assert(false)

var result = 1L

for (i in 1 .. n)

result *= i

return result

}

Again, require makes debugging easier. We do not need to
search for a bug in factorial when the problem is in the
code calling factorial.

