
CS109 Compiling

We write programs in a high-level programming language like
Kotlin, Scala, Java, C++, or C.

A compiler translates the source code to object code (machine
code).

For C and C++, it is customary to compile to native machine
code. It can be executed directly by the processor.

Native machine code is different for different processors,
operating systems, and can depend on library versions.

Kotlin (like Java and Scala) are normally translated to object
code for the JVM (Java virtual machine). A Java runtime
environment is needed on the computer to execute the
program. The exact same object code works on any system.
JVM is heavily used on servers and on Android.

CS109 Compiling a class

The Kotlin compiler compiles each class to an object file.

class Point in file point.kt

Point.class

ktc point.kt

object code

The Point class can now be used in any code that can find
Point.class.

JVM finds Point.class

$ ktc

Welcome to Kotlin version 1.0.5-2

>>> val p = Point(7, 5)

CS109 Compiling a program

We cannot compile Kotlin scripts:
$ ktc hello.kt

error: expecting a top level declaration

println("Hello World")

^

Only declarations can be compiled:

• global variables with val and var,
• functions with fun,
• class definitions with data class or class.

So how can we write a program? If all we have are
declarations, how can we execute any code?

The magic main function.

CS109 Compiled Kotlin programs

1. In your source file hello.kt, define a function
main(args: Array<String>) returning nothing:

fun main(args: Array<String>) {

println("Hello World")

}

2. Compile the source file, resulting an a class file
HelloKt.class:

$ ktc hello.kt

3. Run the program:

$ kt HelloKt arguments

This name is generated from the name of the
source file.


