
CS109 First steps in Kotlin

Like Python, Kotlin has an interactive mode, where you can
try out things or just compute something interactively.

>ktc

Welcome to Kotlin version 1.0.6-release-127

Type :help for help, :quit for quit

>>> println("Hello World")

Hello World

>>> println("This is fun!")

This is fun!

To write a Kotlin script, create a file with name, say, test.kts,
and run it by saying kts test.kts from the command line.

Later, we will see how to compile large programs (so that they
start faster).

CS109 Typing

What is the biggest difference between Python and Kotlin?

Python is dynamically typed, Kotlin is statically typed.

In Python and in Kotlin, every piece of data is an object.
Every object has a type. The type of an object determines
what you can do with the object.

Dynamic typing means that a variable can contain objects of
different types:
This is Python

def test(a, b):

print a + b

test(3, 15)

test("Hello", "World")

The + means different things.

CS109 Static typing

Static typing means that every variable has a known type.

If you use the wrong type of object in an expression, the
compiler will immediately tell you (so you get a compilation
error instead of a runtime error).

>>> var m : Int = 17

>>> m = 18

>>> m = 19.0

error: the floating-point literal does not

conform to the expected type Int

CS109 Dynamic and static typing

Dynamic typing: Flexible, concise (no need to write down
types all the time), useful for quickly writing short programs.

Static typing: Type errors found during compilation. More
robust and trustworthy code. Compiler can generate more
efficient code since the actual operation is known during
compilation.

Java, C, C++, and Kotlin are all statically typed languages.
But Kotlin is the only modern language among them: Kotlin
uses type inference, and you don’t have to write types all over
your program.

>>> var t = 18.0

>>> ::t

var Line_0.t: kotlin.Double

C++11, Scala, Swift, and many
modern functional programming
languages have type inference.

CS109 Block structure

Programming languages make use of blocks of instructions:
the body of a function, the body of a while-loop, the two
alternatives of a conditional statement.

In Python, block structure is indicated by indentation.

In Kotlin, Java, and C, block structure is indicated by curly
braces.

In Kotlin, a block is either a single expression, or a sequence of
expressions surrounded by curly braces.

In Java and C, every statement is terminated by a semicolon.
In Kotlin, the semicolon can usually be omitted at the end of a
line.

CS109 val and var variables

Kotlin has two kinds of variables:

val variables can never change their value. After the variable
name has been defined, it always keeps its current value:

>>> val u = 17

>>> u = 18

java.lang.IllegalAccessError:

tried to access field Line16.u

var variables are like variables in Python—their value can
change as often as you want.

It is easier to reason about programs if they use val variables.

The extreme case—programs without var variables—leads to
a style called functional programming.

CS109 Functions

In mathematics:

f : Z× Z→ Z, f(a, b) = a+ b

In Kotlin:

fun f(a: Int, b: Int) : Int = a + b

Argument types
Result type

Function definition

The function definition is a block: A single expression or a
sequence surrounded by curly braces.

If the function definition consists of a single expression, then
no return statement is needed.

CS109 Functions with and without result

If the function definition is a block in curly braces, you return
the result using return:

>>> fun f(a: Int, b: Int) : Int {

... val s = a + b

... return s

... }

>>> f(3, 5)

8

If the function returns no result, just omit the result type:

>>> fun greet(name: String) {

... println("Hello $name, how are you?")

... }

>>> greet("Otfried")

Hello Otfried, how are you?

