
CS109 Arrays

The runtime system provides only three data types: the
primitive number types (including Char and Boolean), classes
with a fixed number of fields (attributes), and arrays.

Everything else needs to be implemented using these basic
building blocks. For instance, String stores characters in an
array. List is implemented using an array.

An array is simply a block of memory of user-defined length
that stores references to objects of some type.
You can imagine an array as a mutable list of fixed length.

CS109 Using Arrays

We usually use List or MutableList instead of an array.

However, the args variable in Kotlin scripts (which stores the
command line arguments), is of type Array<String>.

Beware, arrays are primitive!

>>> val a = arrayOf(1, 2, 3)

>>> val l = listOf(1, 2, 3)

>>> println(l)

[1, 2, 3]

>>> println(a)

[Ljava.lang.Integer;6a1aab78

>>> val b = arrayOf(1, 2, 3)

>>> val m = listOf(1, 2, 3)

>>> l == m

true

>>> a == b

false

no nice toString() method!

equality operator does not look at
the contents of arrays

CS109 Creating arrays

We can create short arrays by listing the elements:
arrayOf(1, 2, 3, 4).

When the number of elements is large, or not known in
advance, you have to do it differently.

An array of 100 zeroes:

>>> val zeros = Array(100) { 0 }
code computing
the value

Can use the magic variable it (the index of each element):

>>> val squares = Array(10) { it * it }

>>> squares.joinToString(" ")

0 1 4 9 16 25 36 49 64 81

Or simply use a MutableList instead.

CS109 Two-dimensional arrays

In many applications we need a two-dimensional table or
matrix of elements.

We use two indices, usually called row and column.

We use one array for each row. Its elements are the cells of
this row, one for each column.

Then we use one array that stores all the row arrays.

Creating m rows of n columns:

>>> val t = Array(m) { Array(n) { 0 } }

The type of t is Array<Array<Int>>.

(We could do this with List, but it can use much more
memory.)



CS109 Working with two-dimensional array

Accessing the elements:

>>> t[2][4] = 13

>>> t[0][0] = -3

>>> t[1][5] = 99

Checking the dimensions:

>>> t.size // #rows

3

>>> t[0].size // #columns

6

Printing the matrix (you are on your own):

>>> t.joinToString(separator="\n",

transform={it.joinToString()})

-3, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 99

0, 0, 0, 0, 13, 0


