
CS109 App programming

Programming a smartphone app is a bit different from PC
programming.

• We don’t have a compiler on the phone.

• We can use a variety of sensors
(camera, accelerometer, compas, light sensor).

• There is no keyboard.

CS109 Cross-compiling

Write source code on PC.

Use a special compiler running
on PC to create code for phone.

Package to install on the phone.

Cross-compiler

A cross-compiler is a compiler that generates code for a
different platform from the one the compiler is running on.

Same for Arduino and other embedded platforms.

Compiled code needs to be copied to the phone to run.

CS109 Testing

It’s rather annoying to test your code on the phone. There is
no console output, no keyboard, and every time you change
the code, you have to copy it to the phone again.

Solution: Use an emulator for most testing. It provides a
simulation of the phone environment on the PC, so that you
can use println for debugging.

CS109 CS109 Mini-App framework

The iOS and Android software development kits (SDKs) are
very large, complicated, and not suitable for this course.

Instead, we will use the CS109 mini-app framework. It is really
simple to use, but teaches many concepts about app
programming for smartphones.

• Currently only available for Android (a beta version of a
Kotlin compiler for iOS exists, so in the future maybe...)

• Your mini-apps cannot be installed directly on the phone.
You will need the CS109 App to run them.

• Only canvas-based mini-apps are possible, and many phone
features are currently not accessible (e.g. camera).



CS109 How to compile, test, and install

Write your source code: basic.kt

Cross-compile: ktc-dex basic.kt

This creates two files: basic.dex (for the phone) and
basic.jar (for the emulator).

Test on the emulator: kt-emulator basic.jar

On the phone, install the CS109 App (search for KAIST CS109

on Play store). You need Android 4.2 or higher.

Transfer basic.dex to the phone (e.g. mail it to
yourself).

In CS109 App, choose Load new mini-app from
menu, and pick the dex file.

CS109 Security

Your mini-app runs on the phone hardware, just like any other Android
app. It has full access to Android features (only restricted by the CS109
App permissions).

Therefore: do not run DEX files you get from unrealiable sources using
the CS109 App. Use the app only to run your own mini-apps.

The CS109 App has very limited permissions, so not much can go wrong.

CS109 The mini-app framework

Smallest possible mini-app (basic.kt):

class Main(val ctx: Context) : MiniApp {

init {

ctx.setTitle("Demo #1")

}

override fun onDraw(canvas: Canvas) {

canvas.clear(Color(255, 255, 192))

canvas.setColor(Color.BLUE)

canvas.setFont(48.0)

canvas.drawText("CS109", canvas.width / 2.0,

200.0, TextAlign.CENTER)

canvas.drawCircle(canvas.width / 2.0, 400.0,

60.0)

}

}

Main, MiniApp: required names

Context: object providing access to Android features

CS109 The Main class

The Main class must override the onDraw method. It’s
purpose is to draw the graphics for the app.

The Context provides some services, for instance:

• setTitle to set (and change) the title of the mini-app;
• width and height to obtain the size of the screen;
• toast to show a message;
• update to make sure that the screen will be drawn again;
• onTap, onDoubleTap, onFling to handle finger input;
• onGravity and onLight to use sensors.

Other Context methods (see documentation):
• showMessage, askYesNo, inputString for dialogs;
• after for animation;
• createMenu to make a menu.



CS109 Finger input — event processing

You cannot simply use waitMouse to wait patiently—you need
to be prepared to handle finger taps at any time.

class Main(val ctx: Context) : MiniApp {

private var lastX = 0.0; private var lastY = 0.0

init {

ctx.setTitle("Tap and fling demo")

ctx.onTap { x, y -> tapped(x, y) }

}

fun tapped(x: Double, y: Double) {

lastX = x; lastY = y

ctx.update()

}

override fun onDraw(canvas: Canvas) {

canvas.clear(Color(255, 255, 192))

canvas.setColor(Color.BLUE)

canvas.drawCircle(lastX, lastY, 30.0)

}

}

function object

tell system that screen needs to be drawn again

graphics depends on tap

CS109 Using sensors

Smartphones contain a number of sensors. Mini-apps can use light sensor
(not in all phones) and accelerometer.

class Main(val ctx: Context) : MiniApp {

var gravity = arrayOf(0.0, 0.0, 0.0)

init {

ctx.setTitle("Gravity sensor demo #1")

ctx.onGravity { x, y, z -> updateGravity(x, y, z) }

}

fun updateGravity(x: Double, y: Double, z: Double) {

gravity = arrayOf(x, y, z)

ctx.update()

}

override fun onDraw(canvas: Canvas) {

// show gravity value on screen

}

}

function object is called every time new sensor value is available


